
4. Circulation and vorticity

This chapter is mainly concerned with vorticity.  This particular flow property is hard to
overestimate as an aid to understanding fluid dynamics, essentially because it is difficult to mod-
ify. To provide some context, the chapter begins by classifying all different kinds of motion in a
two-dimensional velocity field.  Equations are then developed for the evolution of vorticity in
three dimensions. The prize at the end of the chapter is a fluid property that is related to vorticity
but is even more conservative and therefore more powerful as a theoretical tool.

4.1 Two-dimensional flows

According to a theorem of Helmholtz, any two-dimensional flow  can be decom-
posed as

, (4.1)

where the “streamfunction”  and “velocity potential”  are scalar functions.  The
first part of the decomposition is non-divergent and the second part is irrotational.

If we write  for the flow in the horizontal plane, then 4.1 says that
 and .  We define thevertical vorticity  and the

divergence D as follows:

, (4.2)

. (4.3)

Determination of the velocity field given  andD requires boundary conditions on  and .
Contours of  are called “streamlines”.

The vorticity is proportional to the local angular velocity about .  It is known entirely
from  or the first term on the rhs of 4.1.  As seen in chapter 2, solid-body rotation, or

, has .  Hence the angular velocity of the flow at a point is .  The diver-
gence is equal to the local fractional change in area per unit time.  It is known entirely from

or the second term on the rhs of 4.1. For a circular region, the fractional change in areaa
is , wherer is radial distance.  Hence the radial derivative of the aver-
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ẑ
ψ x y,( )
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age radial velocity at a point isD/2.

The remaining types of motion aretranslation andstrain.  These satisfy both
(irrotational) and  (non-divergent).  Flows satisfying the second condition are called
“solenoidal” flows. Flows satisfying both conditions are called “potential” flows. The Helmholtz
decomposition would be unique except for translation and strain.

Translation is simply .  That is,  and  are linear functions ofx andy.

Strain is determined by the remaining second partial derivatives of  and :

, (4.4)

. (4.5)

The decomposition between and is not unique when strain or translation exists. Strain is the
tendency to stretch and squash material regions while preserving area.  If  and  are the
dimensions of a rectangular area element, it can be shown that , where

, theaspect ratioof the element. If , the flow isconfluentalong they-axis and
diffluentalong thex-axis.  Area is preserved through a balance of confluence and diffluence.

Similarly, , where and the primed axes are rotated 45
deg counterclockwise fromx-y. Pure strain along thex- or y-axis (due to ) causes no stretching
in the  or  directions, whereas pure strain along the - or -axis (due to ) involves no
stretching alongx or y. We can now ask what is the strain in an arbitrary direction. Simply by cal-
culating  in a rotated coordinate system, one finds that, in the direction that makes an angle
with thex-axis, the strain is

, (4.6)

where  (total strain) and  (orientation of the “principal
axis of deformation”).  Specifying  and  is equivalent to providing boundary conditions for
the problem .
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A more elegant approach:  Recall from chapter 1 that the evolution of a material line ele-
ment in three dimensions is given by , or

. (4.7)

The antisymmetric part of the matrix  is .  This
part causes rotations around each of the three coordinate axes.  For example, in two dimensions,

, (4.8)

where , twice the angular velocity about .  Now the symmetric part of  in two
dimensions is

. (4.9)

This contains strain and divergence in thex-yplane. To isolate the strain, let , so that

. (4.10)

The resulting negative-definite matrix has the two eigenvalues, , where is the total strain,
obtained previously.  The corresponding eigenvectors are  and ,
where  is the angle beween thex-axis and the principal axis of deformation, also given previ-
ously in terms of  and .

4.2 Point vortices and point mass sources

We return to the issue of using 4.2 and 4.3 to find  and  given full distributions of
andD.  There is some conceptual and mathematical benefit in using the method of Green's func-
tions.  Thus, consider a “point vortex”,

, (4.11)

where  is the 2D Dirac delta function and  has dimensions of vorticity times area.  The
solution of 4.2 for this source, subject to a boundedness condition at infinity, is

, (4.12)

where  is, by definition, the Green's function for the 2D Laplacian operator.  This Green’s
function is obtained by noting that in polar coordinates,  if the solution is
axisymmetric.
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From 4.1 and 4.12, the actual flow induced by a point vortex of strength  is
. Note that the velocity falls off as 1/r. There is curvature in this flow but no

vorticity except at the origin.

We can also consider a point “mass” source via .  The solution of 4.3 is
 and .   There is no divergence away from the origin, but

there is a steady, integrable source of “mass” right at the origin.

By using Green's theorem and the above expression for , we find that the solution for
 given an arbitrary distribution of  is

, (4.13)

where denotes area and the integral covers all places where . There is an analogous result
for  given a distribution ofD.

4.3 Natural coordinates

A pattern of non-intersecting 2D trajectories determines a special orthogonal coordinate
system callednatural coordinates. The unit vectors for this system are defined
and .  (If  is defined everywhere at the same time, the lines parameterized bys are
called “streak lines”.)

Since , with , we find that

, (4.14)

But , where  is the angle between  and thex-axis.  Also,
.  Therefore,

. (4.15)

The first term on the rhs is due toshear. The second term is due tocurvature and may be written
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D D= 0δ r( )
χ D0 2π( ) 1–

= rlog V D0 2πr( ) 1– r̂=

ψG
ψ ζ

ψ x y,( ) 1
4π
------ ζ x′ y′,( ) x x′–( )2

y y′–( )2
+[ ]dσlog

σ
∫=

σ ζ 0≠
χ

s n,( ) ŝ V V⁄≡
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as , where is the “radius of curvature”. In irrotational flow (e.g., around a point vortex),
the two terms are equal and opposite.  In solid-body rotation, the two terms are equal.

The expression for divergence in natural coordinates is

. (4.16)

The first term on the rhs is due to “longitudinal” compression or expansion.  The second term is
due to confluence or diffluence. The two parts must be equal and opposite in non-divergent flows.

4.4 Absolute circulation

Definition ofabsolute circulation:

(4.17)

where is a closed,materialcircuit, and is the velocity in an inertial frame. By convention,
the path direction is chosen to keep the interior of the loop on the left.

Since the integrand in 4.17 is the velocity component along the circuit, we expect a nice
simplification when we consider the time derivative of :

. (4.18)

Indeed, since the second integrand is a perfect differential, it contributes nothing to the integral.
For the first integral we substitute from the momentum equation to reach

. (4.19)

This is called Bjerknes’s Circulation Theorem.  Notice that gravity -- or any other conservative
force -- cannot contribute to the closed line integral.

The rhs of 4.19 is called thesolenoidal term. Using the ideal-gas equation of state, we can
also write it as

(4.20)

Graphically, the solenoidal term is proportional to the “area” inside  when  is drawn in -p
space or (for an ideal gas) - space. If the sense of the integration path changes, so does the
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sign of the “area”.

Tubes perpendicular to both and are calledsolenoids. The change in circulation on is
determined by the sum of the -p cross-sectional areas of the solenoids passing through the loop.

Kelvin's Circulation Theorem: If there are no solenoids, . (Example: if lies
in an isobaric surface.)

For yet another way to express the solenoidal term, we use Stokes’ Theorem:

(4.21)

Here  denotes the surface element (area element times unit normal vector to the surface).  If
we put , the identity becomes

. (4.22)

The lhs is the solenoidal term.  On the rhs,S is defined

(4.23)

Note thatS is directed along a solenoid.
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Definitions: a fluid isbarotropicif everywhere; otherwise it isbaroclinicandS is
called thebaroclinicity vector.Examples of barotropic fluids: (1) constant, (2) constant, (3)
T constant, (4)  surfaces parallel top surfaces.

In pressure coordinates, the pressure-gradient force is “conservative” and baroclinicity
enters through the vertical ( -) integral of the right-hand side of , the equation for
hydrostatic balance.  A similar statement applies to the Boussinesq equations.  In that model, the
pressure gradient is also conservative andS comes from the vertical integral of the the buoyancy
(whether or not hydrostasy is assumed). This can change the circulation about the horizontal axes
but not the vertical.

4.5 Absolute vorticity

The definition of absolute vorticity,   is

. (4.24)

To get an equation for , start with the momentum equation in the form

. (4.25)

Taking the curl, we obtain

(4.26)

The first and second terms on the rhs areadvectionandconvergence. The fourth is the solenoidal
term.

The third term on the rhs of 4.26 is identical to the evolution of a material line element, as
discussed in chapter 1 (below Eq. 1.6).  Its vertical component (for instance) is

. (4.27)
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illustrated in the diagrams below.  Stretching combined with convergence is entirely due to the

“horizontal” part of the convergence.  Thus,

. (4.28)

The first three terms in 4.26 can be written as a pure flux divergence.  By combining the
first two and exploiting the non-divergence of  to rewrite the third, we get

, (4.29)

where the vorticity and velocity components are still in the inertial frame.  The most important
conclusion from 4.29 is that, in the absence of solenoids (and friction), the volume-integrated vor-
ticity cannot be altered except by boundary fluxes.  This is aglobal conservation statement about
vorticity.
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By invoking mass continuity, we can write 4.26 as

. (4.30)

For a flow in hydrostatic balance, is removed from the expression for (and the first term on
the rhs of 4.25).  For the shallow-water model, illustrated below, we also have  and

. The latter constraint removes the remaining tilting terms in the vorticity equation.
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(4.31)

in the shallow-water model.  This is similar to conservation of circulation except that the recipro-
cal of thedepth now appears instead of the area.

Definitions: A vortex line is a line that is everywhere parallel to .  Avortex tubeis a
closed surface consisting entirely of vortex lines.

Theorem: Vortex lines are conserved in a barotropic flow.  That is, they are “frozen” into
the fluid.

Proof. In general,
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This theorem can be used to extend Kelvin's Circulation Theorem to an entire vortex tube.
Think of the vector  as the “flow” in the tube.  For any slice through the tube, consider the
product , where is the area average of over the slice, is the surface
element andA is the area of the slice.

Since (the “flow” is nondivergent), we know thatC is the same for all slices.
We may interpret it as the “intensity” of the tube. Furthermore, since material lines remain on the
surface of the tube, Kelvin's Theorem applies. We may therefore conclude that the intensityC of
the tube is constant in time.

4.6 Relative circulation

Definition of relative circulation:

(4.32)

whereV is the velocity in the rotating frame.  Hence,

. (4.33)

By Stokes’ Theorem, the second term on the rhs becomes .  But since
, we have

, (4.34)
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Using 4.19, we can write

. (4.35)

It follows that, in a barotropic atmosphere or ocean, is conserved on a material circuit.
Notice that  can change through latitudinal displacement as well as locally through tilting or
contraction/expansion.

Definition of relative vorticity:

. (4.36)

Since , we have

, (4.37)

which should be compared to 4.34.

The vertical component of  is , where  is the relative vorticity
about the vertical axis andf is the Coriolis parameter. To see what form takes in the vor-
ticity equation, we derive an equation for .
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. (4.40)

Most of the terms are familiar.  Recall that .  The second term on the rhs,
normally written , represents the so-called “beta effect”. It corresponds to changes in relative
circulation due to latitudinal displacements: .

For the shallow-water model, the vorticity equation 4.40 reduces to

(4.41)

in the absence of friction.  Invoking mass (volume) conservation and integrating over depth, we
get

, (4.42)

which may be compared to 4.31.

4.7 Potential Vorticity

Circulation theorems describe a relationship between velocity and circumference or,
implicitly, between vorticity and area.  There is a more powerful vorticity theorem that removes
both the convergence and solenoidal sources of vorticity by combining the circulation principle
with mass and entropy conservation.  The use of mass conservation to remove the convergence
effect was illustrated for the shallow-water model in 4.31.

What does it take to make the solenoidal term disappear?  The baroclinicity vector is

(4.43)

(check the second equality by assuming an ideal gas). We choose one of the quantities ,p, sand
T and call it . Suppose that, for some reason, . Then, since there are no solenoids in
a -surface (S is tangent to it), the circulation around a closed loop in the surface is constant.
Then for the material tube illustrated below (not necessarily a vortex tube), we have

. (4.44)

Here is a scalar element representing the average cross-sectional area of the tube between the
two -surfaces.  We also have the other two constraints noted in the diagram, so that finally
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This result expresses the conservation ofpotential vorticity. It is important to realize that potential
vorticity is conserved even if the fluid is baroclinic.

 More generally, we have Ertel's potential vorticity equation,

. (4.46)

This can be obtained by forming the scalar product of 4.26 with .  The rhs of 4.46 vanishes if
 and .  We then have conservation of Ertel's potential vorticity, usually

denotedq. In incompressible flow, one gets by putting . In adiabatic flow of an
ideal gas,  does the trick.

For large-scale disturbances in the atmosphere, we estimate:
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Problems

4.1  Show that the 2-dimensional flow field in the vicinity of a point can be determined if
the velocity, divergence, vorticity and deformation at that point are known.

4.2 Show that the “parallel shear flow”, , is the sum of uniform vorticity
and uniform strain by partitioning the streamfunction into two parts.

4.3 Verify Eq. 4.6. Hint: use the definitions 4.4-4.5 and the transformations for rotations,
 and , where

(column vectors assumed).

4.4  Using Eq. 4.12, decide where, on the unit circle, you would place a point vortex in
order to maximize/minimize  at the center of the circle.  What about a point mass source?

4.5 A cylindrical column of air at 30 deg latitude with radius 100 km expands horizontally
to twice its original radius. If the air is initially at rest, what is the mean tangential velocity at the
perimeter after expansion?

4.6  An air column at 60 deg N with  initially reaches from the surface to a fixed
tropopause at 10 km height. If the air column moves across a mountain 2.5-km high at 45 deg N,
what is its absolute vorticity and relative vorticity as it passes the mountaintop?

4.7  Compute the rate of change of circulation about a square in the -  plane with sides
of 1000-km length if temperature increases eastward at a rate of 1 deg C per 200 km and pressure
increases northward at a rate of 1 mb per 200 km.  The average pressure is 1000 mb.

4.8 A homogeneous fluid is in solid-body rotation inside a cylindrical tank. By how much
does the relative vorticity change in a column of fluid that is moved from the center of the tank to
a distance 50 cm from the center? The fluid is rotating at the rate of 20 revolutions per minute and
the depth at the center is 10 cm.
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